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SUMMARY

Several operational forecast models are now available for iceberg
trajectory prediction. Most, however, are based on an exact solution of the
force balance equation for the iceberg and, therefore, assume implicitly that
these forces are quantifiable in a forecast situation. In reality this is not
the case as many factors, such as iceberg geometry and future currents or
winds, are at best imperfectly known and degrade the accuracy of prediction.
The principal shortcoming of deterministic models, however, stems from our
inability to forecast oceanic eddies which account for a large part of iceberg
motion.

Here we take a different approach towards iceberg forecasting, treating
the effects of uncertainties in environmental parameters and ocean turbulence
in a statistical manner. We reason that even if we cannot predict these
deterministically, valuable information may be drawn from past iceberg
observations allowing us to predict a most likely future position. Although
the major part of this model is based on statistical techniques, some
components, such as tidal motion, are accurately predictable and are treated
deterministically. A basic requirement for the implementation of this model
is an extensive analysis of past iceberg behaviour in the region of concern.

For the Grand Banks of Newfoundland, the 1984 and 1985 iceberg
observations, taken from oil rigs as well as from their support vessels and
aircraft, were available for our analysis. After elimination of dubious data,
the first step of the analysis consisted of determining the iceberg response
to wind. A correlation analysis showed that icebergs exhibit a downwind drift
of 1.8% of the 10 m wind speed, confirming results of observations on the
Labrador Shelf. Next, the wind-driven as well as the tidal components of
motion were subtracted from the observed iceberg velocities to obtain the
residual drift.

The analysis of residual iceberg velocities on the Grand Banks allows us
to determine the mean pattern as well as the amount of variability in iceberg
motion over the study area. Icebergs clearly show the effect of the Labrador
Current, which flows along the edge of the Grand Banks, causing a strong mean
drift and increased variance.

An autocorrelation analysis of the variable part of the residual iceberg
motion shows that the drift tends to be consistent over times in the order of
25 hours. This means that in a forecast situation one may be able to infer
effectively the future velocity of an iceberg simply by observing its present
rate of drift (and appropriately accounting for wind and tidal motion). Such
a prediction is relatively accurate for times shorter than 25 hours: however,
as time progresses, the velocity gradually loses correlation with its initial
value and becomes less predictable.

Based on the results of these analyses an operational forecast model is
conceived. Model inputs consist of observed and forecast winds as well as the
most recent iceberg positions. Model parameters include the iceberg
decorrelation time scale (25 hours)., wind drift factor (1.8%), tidal
constants, mean residual velocities, and variances, all of which arc defined

vii



on a grid system to reproduce thecir spatial wvariabilities. A standard
technique is used to compute tidal current; 1.8% of the wind speed and the
mean flow are combined to obtain the deterministic component of drift
velocity. This velocity is subtracted from the velocity estimated from recent
iceberg position fixes to assess the residual iceberg velocity, which is the
component of motion that tends to persist for time scales of about 25 hours.
This motion is treated as a fading memory process with the velocity decreasing
cxponentially from its initial value, with a time constant of 25 hours. To
compute future positions, the effects of the velocity perturbations are
recombined with predicted tidal currents, the mean flow and the future wind
drift (using the weather forecast). Position calculations are done at hourly
intervals. For each predicted position, confidence intervals are computed and
the chance of iceberg impact with the rig is assessed. By comparing the
probability of impact to allowable risk the model can provide guidance for the
initiation of evasive action.

The actual operational model is implemented to run on any IBM-compatible
microcomputer. The operation of the model and the interpretation of the
results are made easy through extensive use of the graphic and interactive
capabilities of microcomputers. In addition to providing a forecasting tool
the model automatically archives observed iceberg tracks, thus reducing the
burden on the iceberg observers.

viii



RESUME

Plusieurs modéles numériques sont présentement disponibles pour la
prévision de trajectoires d'icebergs. La plupart d'entre eux se base sur la
solution exacte de 1'éguation des forces agissant sur 1'iceberg, prenant ainsi
pour acquis que ces forces sont quantifiables. En fait ces forces dépendent
de plusieurs facteurs, tel que la géometrie de 1'iceberg ou 1les vitesses du
vent et du courant, cependant ces deux derniers facteurs sont au mieux, mal
connus et par conséquent rendent les prévisions peu fiables. A 1'heure
actuelle, la lacune principale de ces modéles déterministes provient toutefois
de 1l'inabilité A prévoir le mouvement aléatoire des gires ocdaniques qui
contribuent substantiellement au mouvement des glaces.

Nous adoptons ici une approche différente, en appliquant un traitement
statistique 2 la composante de mouvement attribuable aux gires océaniques ou a
d'autres effets impondérables. Bien que ceux-cl ne soient pas prévisibles
d'une fagon déterministe, un examen des observations passées pourrait quand
méme nous fournir une information utile pour déterminer la position probable
des icebergs dans le futur. Notre modfle se base principalement sur un
traitement statistique mais inclus tout de méme certaines composantes
déterministes qui sont prévisibles tel que le mouvement di &% la marée. Il est
essentiel pour la mise en place de ce modéle de procéder & une analyse
compléte des données existantes sur les icebergs, afin de caractériser les
propriétés statistiques de leur dérive pour la région concernée.

Les données des années 1984 et 1985 ont été analysées pour 1les Grands
Bancs. Aprés 1'élimination de toutes levées doutcuses, la premidre tdche
consiste & déterminer 1'effet du vent sur la dérive des icebergs. Une analyse
de corrélation nous permet d'établir qu'en moyenne les icebergs dérivent et
dans la direction du vent & 1.8% de la vitesse de celui-ci confirmant ainsi
les résultats de Garrett et al pour le plateau du Labrador. Pour la prochaine
étape d'analyse, le mouvement attribuablec au vent et 2 la marée sont
soustraits des trajectoires observées afin d'obtenir la composante de dérive
résiduelle.

Une analyse de cette dérive résiduelle nous permet de quantifier le
mouvement moyen et la variance des trajectoires des icebergs. La distribution
bi-dimensionnelle de ces quantités montre clairement que le courrant du
Labrador longe le rebord du plateau continental. En plus d'un accroissement
de la dférive moyenne, celui-ci semble engendrer un augmentation de la
variance.

Une analyse d'autocorrélation des vitesses résiduelles des icebergs nous
permet d'établir que la dérive démontre une certaine constance sur une échelle
de temps inférieure @ 25 heures. Il est ainsi possible de baser une prévision
sur la vitesse présente ou passéc d'un iceberg (en tenant compte aussi des
effets du vent et de la marGe). Une telle prévision peut &tre assez précise &

court terme, mais devient moins fiable au del?® de 25 heures.
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C'est en prenant comme point de départ 1les résultats de nos analyses
qu'un modéle de prévision de trajectoire d'iceberg a été congu. Les données
d'entrée se composent d'observations et de prédiction du vent ainsi que de
levées récentes de la position sur 1'iceberg en question. Les paramg¢tres du
modéle comprennent 1'échelle de temps de corrélation (25 heures), 1le facteur
de dérive due au vent (1.8%), ainsi que les constantes de marée, la dérive
moyenne et la variance résiduelle qui sont définies sur une grille
bi-dimensionnelle. Les courants de marfe, calculés selon la méthode
habituelle, la dérive moyenne et la dérive due au vent sont soustraits de Ila
vitesse observée résultante de 1'iceberg (calculée 2 partir de levées
récentes) afin d'obtenir la vitesse résiduelle. Celle ci est en fait Ila
partie du mouvement qui montre une constance sur une €chelle temporelle de 25
heures. Cette caractéristique du mouvement est modélisée par un processus a
mémoire décroissante; la vitesse décroit exponentiellement & partir de sa
valeur initiale sur un échelle de 25 heures. Afin d'arriver 3 une prédiction,
cette vitesse décroissante s'ajoute au déplacement moyen, a la dérive prédite
pour 1a marée et 2 la dérive éoléenne (basée sur les prédictions
météorologiques). Les positions futures de 1'iceberg sont calculées a
intervalle d'une heure. En plus de la position des icebergs, les limites de
fiabilité et la probabilité d'impact contre la platte-forme de forage sont
estimées. Cette derniére, lorsque comparée au risque permissible, peut servir
de guide décisionnelle pour initier les procédures d'évacuation.

Le modéle cst installé sur un micro-ordinateur du type IBM qui sicd bien
2 l'usage sur le terrain. La pleine capacité du micro-ordinateur est utilisée
pour simplifier 1'opération du modéle. Les résultats sont présentés de fagon
claire pour 1'utilisation d'une méthode graphique et interactive.



INTRODUCTION

Icebergs are a major concern for o0il exploration in eastern Canadian
waters. Offshore exploration platforms are not designed to withstand the
impaét of icebergs, and although small icebergs may be towed away, the only
effective countermeasure is often evasive action. In view of the significant
cost of interrupting drilliﬁg operations by disconnecting and then re-entering
the well, some method is required to determine whether or not a particular
iceberg represents a significant threat to the platform. Several numerical
models have been used to predict iceberg trajectories in attempts to provide
such information. Many of them use deterministic prediction schemes and have
fallen in disfavour due to thgir lack of accuracy: The reason for this
apparent failure can be found in the turbulent nature of ocean circulation,
where eddy-like motion contributes significantly to iceberg behaviour. This
motion cannot at present be predicted deterministically, giving rise to the
common remark that icebergs must have minds of their own (LeBlond and Hodgins,

1985).

In a recent study of iceberg motipn on the Labrador Shelf, Garrett et al.
(1985) suggested an alternative approach to forecasting iceberg trajectories.
This approach considers iceberg motion principally from a étatistical point of
view. From a careful examination of iceberg behaviour it is found that a
certain part of the eddy motion can be predicted by considering the past

"~ history of a particular iceberg. This technique, combined with a simple




consideration of tides, wind, and mean drift, has the potential of
significantly improving iceberg forecasts, but remains computationally simple.
The technique also offers a method of computing the confidence intervals which

indicate to the user the expected level of accuracy for each prediction.

Inspired by the work of Garrett et al. {1985), ASA Qonsulting Ltd.
proposed to implement this technique into an on-site operational iceberg
forecast model for the Grand Banks of Newfoundland. The Environmental Studies
Revolving Funds (ESRF) is funding the present project. The study area
(Figure 1) covers the region of most intense oil exploration on the Grand

Banks, where icebergs represent an operational concern.

The implementation of the operational moﬂel for the Grand Banks
necessitates several modifications to the Garrett et al. (1985) conceptual
model because of site-specific environmental conditions and operational
procedures. To arrive at a practical forecasting system, one must also
carefully consider ease of use and interpretation. This report documents in
detail all aspects of the operational model. In its present state, the
forecasting program has been verified against observations, and should provide
a useful tool for predicting iceberg trajectories on the Grand Banks. Further
improvements are, however, undoubtedly -possible, as a result of comments

during the field trials and as more iceberg observations become available for

analysis.
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Figure 1. Study area on Grand Banks of Newfoundland.



CHAPTER 1 _GENERAL MODEL THEORY
Iceberg trajecggry forecast models can be grouped in three general
categories: deterministic, statistical, and hybrid. Operational forecast
models have traditionally used the deterministic approach, even though recent
research has shown promise in statistical and hybrid models (Whitemore and
Gentleman, 1985; Gaskill et al.,'1984). Before discussing the theoretical
grounding of our operational hybrid model, let us first examine the three

types of model in more detail {a more thorough review can be found in Marko et

al., 1983).

Deterministic models are based on exact solutions of the equations of
motion for icebergs (Smith and Banke, 1983; El Taﬂan, 1980). To achieve this
one must be able to evaluate all forces acting on an iceberg. Unfortunately
these forces depend on iceberg geometry, wave climate, wind and current
velocities, all of which are at best imperfectly known in an operational
forecast sitﬁation. The resulting models often show encouraging results in
hindcast studies when carefully measured iceberg shapes and observed
atmospheric and ocean climate data are available to calculate the forces at
each point along the iceberg's trajectory. In an operational situation,
however, these models suffer from prediction errors resulting from
uncertainties in all of these quantities. Deterministic models often do not

provide explicit estimates of prediction error.



In statistical models, data analysis techniques are used to determine the
statistical behaviour of observed iceberg tracks (Whitemore and
Gentleman, 1985; Intera, 1980). 1If one has enough observations and can assume
that iceberg behaviour will not change systematically in the future, these
results can be used to predict probable iceberg positions so as to minimize
mean squared error. The analysis may include fitting relationships between
future iceberg positions and known quantities such as past iceberg position,
observed or predicted winds. The model predictions always retain a certain
amount of quantifiable uncertainty which may be the result of random effects

of unpredictable atmospheric and oceanic fluctuations.

Hybrid models borrow from both deterministic and statisfical models in
varying proportions (Gaskill et al., 1984; Ga?rett. 1984; Garrett et al.,
1985). They assume that part of the iceberg motion can be predicted exactly
but there alwéys remains a certain portion of motion which can be regarded as
resulting from a random process. These models may show significant
improvements over purely statistical models if a large fraction of the motion
results from predictable quantities such as tidal currents. Some hybrid

models provide information on the confidence level of predicted positions.

Many of the iceberg trajectory prediction models now available can be
considered of a hybrid nature.  However, most remain largely based on the
deterministic philosophy and give little consideration to the predictive value
of complex deterministic formulations. Here we put forth a complementary

approach, starting from a purely probabilistic approach and adding



deterministic components only if it can be shown that they significantly
improve predictive ability. This approach results in a simple and
computationally efficient model. In the present implementation only tides are
considered in a deterministic fashion. Forecast winds are used in the
prediction, but the coupling between wind and iceberg motion is determined
from statistical analysis. Similarly the mean drift is obtained from
statistical analysis. It can be expected that as reliable current forecast
models and observational techniques become available their predictions could

be incorporated and used to some advantage in the present model.
1.1 OPERATIONAL MODEL

The operational model to be implemented here for the Grand Banks is based
on the work of Garrett et al. (1985) who investigated the behaviour of
icebergs on the Labrador Shelf. Their research has led them to propose a
prediction scheme for iceberg trajectories based on statistical analysis but
which can also include deterministic components. The particular

implementation proposed here can be formulated as:

T
z(T) = z(0) + i [ Ut(t) + awW(t) + ﬁ'] dt + a(T) U(0) + e(T)

where z is the iceberg position,
T is the time of thé prediction, measured from the origin, (T=0),
which corresponds to the most recent iceberg observation,
Ut is the tidal velocity,

W is the wind speed (preferably near-surface wind, i.e., 10 m),



aw_is a wind drift coefficient,

U is the climatological mean iceberg drift velocity,

a is a time-dependent prediction factor (not related to aw),
U(0) is a recently observed residual velocity, and

< is the prediction error.

The second right-hand term groups the effects of tides, winds, and mean
drift. The tidal currents are considered deterministic and are applied
dircctly to the iceberg. The winds are also considered as deterministic
(i.e., the error in wind forecast is not considered) but the response of the
iceberg to wind (aw) is determined from a statistical analysis. The mean
iceberg drift is similarly determined from an analysis of observed iceberg

tracks and is considered deterministically.

The third right-hand term is a statistical prediction term using
previously observed iceberg velocity estimates as predictors. The statistical
component represents mostly the effect of oceanic eddies which at present
cannot be forecast deterministically. Although the conceptual model can use
several past velocities in the prediction _(or even other predictors
independent of iceberg observations), it was shown by Garrett et al. (1985)
that 1little advantage is generally gained by using many predictors and it
suffices to consider a single predictor consisting of a recent velocity
observation. The iceberg velocity, U(0), used here is really a velocity
perturbation, as the effects of tides, wind, and mean drift ﬁave been removed.

The cocfficient a is a function of time determined from an autocorrelation



analysis of iceberg observations, and in the simplest case is given by:

o =9 (l—e-qt)

where 1—1 is a time scale (specifically the Lagrangian time scale), which

expresses the fact that an iceberg is likely to keep its present course for a

period in the order of 1

The last term is the prediction error which also depends on the iceberg
behaviour as determined from autocorrelation analysis. This term allows a
determination of confidence intervals in predicted positions and the

evaluation of impact probability.
1.2 TIDE-INDUCED MOTION OF ICEBERGS

Tidal currents in the first few tens of metres of the water column can
contribute significantly to iceberg motion. Inasmuch as these tidal currents
are predictable, they will contribute a deterministic component to iceberg
motion. A simple dynamical analysis can show that the icebergs should respond
directly to ambient currents (i.e., the tidal current velocity is entirely
imparted to the iceberg). 1In general, current shear may exist on the scale of
iceberg dimensions, especially in the vertical, complicating the relationship
between iceberg and water motion. In predicting the motion of icebergs it
would therefore be preferable to determine the tidal constants from observed

iceberg trajectories.



Tides are a direct result of the gravitational attraction of the sun and
moon. Because these forcés are cyclical and can be predicted accurately, the
responses they cause in the ocean are largely deterministic (although
secondary effects such as variability in stratification, if one considers
internal tides, may induce non deterministic components). For the purposes of
analysis and prediction the tidal signal is generally decomposed into a series
of constituents of constant frequency.' The amplitude and phase lag of each of
these constituents is determined from the analysis of observations, and
velocity predictions for each component (x and y) are given by:

u, = § u cos(wit - Pi) (1.1)

t i

where ui. wi, and Pi are the amplitude, frequency, and phase of the ith

constituent.

The results of Garrett et al. (1985) show good agreement betweén‘tidal
currents deduced from iceberg motion and those observed directly with current
meters in the upper water column. To consider the statistical behaviour of
the residual eddy motion, the tidal motion, which can be considered

deterministically, is removed from the observed tracks.
1.3 WIND-INDUCED MOTION OF ICEBERGS

The tideless iceberg velocity field can be modelled by (Garrett et al.,
1985):
u = U + a W (1.2)
w

where U0 denotes a near-surface water velocity, aw is a scalar drift factor,



and W is the wind velocity. In this formula the iceberé response is assumed
to be linear and instantaneous, which can be shown to be an appropriate
approximation from a dynamical point of view (Garrett et al., 1985).
Cross-correlation analyéis of iceberg and wind data for the Labrador Shelf
shows that icebergs drift at 1.8% of the wind speed, with negligible angular
deflection. This drift coefficient is consistent with those derived from an
analysis of drag forces on icebergs. it should be noted that this drift
includes the indirect effects of winds, such as wind-induced currents and
waves, therefore decreasing the advantage to be gained from a deterministic
inclusion of these factors. Before considering the behaviour of residual
iceberg velocities, the component of wind-induced motion is removed, as it was
for the tide. 1In the prediction model, tidal, wind, and mean motion are added
to the statistical prediction of eddy motion. 1In doing this we are neglecting
errors resulting from wind forecast uncertainties. Considering that the
prediction uncertainty resulting from the randomness of eddy motion is usually
large, compared to the wind driven motion itself, the added error introduced

by the use of forecasted wind is small.
1.4 MEAN RESIDUAL ICEBERG VELOCITY

After .removal of the wind- and tide-induced motion, observed iceberg
tracks can be analysed for any residual mean motion. This mean component
results from the mean oceanic circulation and could be obtained from other
sources such as current meter records or drifter data; however, as for tides,

the mean drift is best determined from the icebergs themselves. We should

10



note that the mean flow discussed here does not include an average component
of drift resulting from wind, which has already been removed (see Section
1.3),_ The mean residual component of iceberg drift is considered

deterministically in the prediction model.

1.5 STATISTICAL MODEL

The following discussion is based, with few exceptions, on Chapter 7 of
Garrett et al. (1985) and on Garrett (1985), to both of which the reader is
directed for a more detailed and rigorous discussion. The general problem of

statistical forecasting consists of determining the best estimate, x. of a

guantity X, from a linear combination of inputs or predictors, yi. according

to the formula:

- '
X z ai yi (1.3)

Here we define the best estimate as the one which minimizes the mean square

D —— g

error, (x - x)z. Given a set of observed x and corrcsponding inputs v,. one

can determine the coefficients ai that are required for optimum prediction.

Let us now consider more spccifically the motion of icebergs with any
mean and any deterministic component removed and with no cross-correlation
between the u and v components (equivalent to a one-dimensional case). Future
iceberg velocities U'(t) are to he predicted from past iceberg velocities

U'(—ti). The coefficients ai can be related to the autocorrelation function

of iceberg velocities, R(r) = U'(t) U'(t+r) / U'(t) U'(t). as a function of

lag, 7, by:

11




1 R(ta-tl) R(ts—tl) .o a!) R(t+t1)

R(t1~t

) 1 R(ts—tz) .. aé R(t+t2)

(1.4)
In the case where R(7) = e_y T, it can be shown that the optimum estimate

is obtained by using only the most recent velocity observation and a

< . -7 t . .
coefficient a' = e . An exponential autocorrelation function can be a good

first approximation to observed iceberg autocorrelation functions and arises
from familiar random walk or first-order Markov processes. For such processes

future velocities are simply related to past velocities by:

U(t) =e” Y ur(o) + e(t) (1.5)

where e is a normally distributed random variable, uncorrelated with u, with

zero mean and variance equal to (U‘)z(l—e_

term on the right-hand side, e_‘y t U'(0), is the optimum estimate of U'(t),

2 t). In equation 1.5, the first

whereas the second term gives us an estimate of the possible prediction error.

The expoﬁential autocorrelation function expresses the fact that an
iceberg is likely to retain its present velocity for some time in the future.
With time, however, successive velocity perturbations will progressively
obliterate all correlation with an initial velocity. The iceberg effectively
has a fading memory of its previous velocity. The quantity <~ describes the
rate at which the iceberg velocity 1loses its correlation with an initial
value, and is appropriately called the decorrelation rate. In our case the
velocity estimates move with thé iceberg (i.e., successive estimates are for

different points along the iceberg trajectory), and 7_1 is referred to as the

12



Lagrangian decorrelation time scale. It can be noted that winds and currents
usually exhibit a decorrelation in time so that the simple model discussed

represents the combined effect of wind and currents on iceberg motion.

It should be noted that apart from wind effects, which have been removed
here, icebergs follow the movement of the ambient water. The statistical
behaviour of icebergs therefore directly reflects the properties of the
oceanic eddy field. The consistency found between statistics derived from

icebergs, drifters, and current meters confirms this (Garrett et al., 1985).

1.6 POSITION PREDICTION

In the case of iceberg trajectory prediétion we are concerned with
position rather than velocity predictions. " In considering two—dimensiénal
motion we may want to include the effect of inertial oscillations which affect
each component of autocorrelation as well as the cross-correlation. Finally

we must consider the effect of observational errors in past iceberg positions

used in the prediction scheme.

Garrett et al. (1985) showed that integrating the velocity prediction
equations in time results in an equivalent optimum prediction for position, so
that for the exponential autocorrelation discussed earlier we obtain
a = %-(l—e—vt). Two dimensionality is easily considered by denoting position

and velocity vectors as complex quantities z = x + iy and w = u + iv. The

autocorrelation function is then replaced by Q(ri = R(r) + iC(7) where C(7) is

13




the cross-component correlation and we have assumed isotropy (Ru(r) = Rv(r));
isotropy is a reasoﬁable first assumption for the Labrador Shelf, and, as will
be seen, is better for the Grand Banks. Inertial oscillations superimposed oni
an exponential correlation function are allowed by modelling Q(r) as:
¥, T e—(v, + if) 7

ar) = Ae t A

1 2 (1.6)

where v:lis the exponential decorrelation time,

1;1 is the decorrelation time for inertial oscillations, and

f is the Coriolis frequency.
The coefficients A1 and A2 denote the relative proportion of velocity variance
attributable to the exponential and oscillatory components of the correlation

function. For a noiseless data set A1 + A2 equals 1 because by definition

R(0) is equal to 1.

In the case of trajectories observed with some degree of error, two
successive velocity estimates, w(t) and w(t+r), are always likely to be
diffefent even as 7 tends to zero. This difference results in an observed
autocorrelation function Ro which tends to a value less than unity for 7 - 0.
For iceberg trajectory prediction where past velocity estimates are based on
successive position observations at constant time intervals, d4dt, the observed
autocorrelation function is given by:

QO(At) = A R(4t) - %(1 - A), for the first lag, and
Qo(ndt) = A Q(nat), for subsequent lags, n>1. (1.7)
This formulation can be readily generalized to the case of non constant lags.

In equation 1.6 we therefore have, for large lags and noisy data, A1 + A2 = A.



The coefficient A is given by:

o2 —
A = = (1-8)
u? + €2 v + €2
u v

and denotes the proportion of observed variance, u® + E;. not attributable to

observational noise, E:.

Another effect of observational noise is that substituting A e—1 T for

R(r) in equation 1.4 we find that the coefficients a; for i>1 are no longer
zero. This result means that, even for an exponential autocorrelation
function, a multi-term predictor can be obtained. Clearly the inclusion of
severalvprevious observations will reduce the effect of error, however,
Garrett et al. (1985) have shown that, for practical purposes, on the Labrador
Shelf, the increased accuracy from using many past iceberg observations is
marginal, and a one-term predictor is adequate. More attention will bé . given
to observational noise specifically in the context of the Grand Banks, in

Section 3.2 and Appendices B and C.
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CHAPTER 2  DATA ANALYSIS FOR THE GRAND BANKS

Several parameters in the general model just described are of a
site-specific nature. This chapter describes the data analysis undertaken for

the Grand Banks to estimate the statistical parameters required by the model.

2.1 DATA REVIEW

' Existing reports and data analyses were first examined for a preliminary
assessment of drift statistics on the Grand Banks. This review yielded mostly
a qualitative description, and a further analysis of 388 iceberg tracks and
several current meter records was undertaken better to define drift

characteristics on the Grand Banks.

Petrie and Isenor (1984) and Isenor and Petrie (1985) have analysed means
and variances of 39 satellite drifters reporting positions, over all seasons,
from the Grand Banks and Labrador Current. Birch (1985) has analysed five,
satellite-tracked drifters deployed in the Hibernia region in November 1984.
Some of their results, pertinent to the region of interest, are shown in
Table 2.1. The error associated with each drifter satellite fix is in the
order of 4 km, so that the typical sampling rate of 8 hours implies a velocity
error of 0.10 m/s in the daily averages they have used to compute drift
statistics. In addition to positional and sampling error, the statistics are
also contaminated by the effects of wind, inertial waves, and tides. These
errors, combined with the relatively few buoy days in each lox 1o square,
imply that the estimated statistics are qualitative at best.
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TABLE 2.1

Summary of velocities from Petrie and Isenor (1984) and Birch (1985)

-—E..S —3 .5
Source description u v (u'®) (v'®) Number of
m/s m/s m/s m/s buoy days

Petrie and Isenor:
Drifter data over
all seasons, grouped
into ]oxl0 cells,
centred on:
46%°30'N  48%°30'wW -0.22 0.30- 0.27 0.36 3
46%30'N 49%30'W -0.08 -0.03 0.26 0.07 3
47%°30'N 47%30'w 0.09 -0.13 0.18 0.22 83
47°30'n 48%30'w 0.11 -0.05 0.16 0.11 45
Birch:
Drifters released
near Hibernia on
the same day,
grouped for the
Grand Banks and the
Labrador Current.
Grand Banks
drifter # 5419 0.02 -0.07 0.12 0.13
drifter # 5420 0.03 -0.08 0.14 0.16
drifter # 5421 0.04 -0.05 0.12 0.13
drifter # 5422 0.05 -0.06 0.11 0.13
drifter # 5428 0.05 -0.04 0.12 0.12

total days . 25
Labrador Current
drifter # 5419 -0.04 -0.45 0.16 0.22
drifter # 5420 -0.07 -0.48 0.12 0.22
drifter # 5421 -0.15 -0.42 0.20 0.27
drifter # 5422 -0.15 -0.42 0.15 0.26
drifter # 5428 ~0.07 0.33 0.13 0.23

total days . 8
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In their reports they shqw a strong mean flow parallel to the 200-m
isobath. On the Grand Banks the mean speed is typically 0.05 m/s, whereas in
the Labrador Current the mean spéed ranges from 0.25 to 0.40 m/s. On the
Grand Banks the standard deviation in drift velocity is in the order of
0.13 m/s, whereas in the Labrador Current it 1lies between 0.16 m/s and

0.24 m/s.

Several current meter records are also available for the top 30 m of the
water column near Hibernia (48050'N, 46045'W). Using the data collected from
two, vector-averaging current meters at 20 m depth, Petrie1 obtained a mean
current of 0.017 m/s with total standard deviation of 0.13 m/s, which confirms
the drifter results. Tﬁe low Reynolds stresses, (momentum transfer arising
from the cross-correlation of velocity components in a shear flow), at
Hibernia imply émall local shear. We may therefore expect that the shear
resﬁlting from the Labrador Current is limited to a narrow band near the edge

of the shelf and and has little effect at Hibernia.

Isenor and Petrie (1985) and Birch (1985) present estimates of the
Lagrangian velocity autocorrelation. Those presented by Birch (1985) for the
Grand Banks indicate the presence of wave motions of period 4 days. The
autocorrelations presented by Isenor and Petrie (1985) are representative of

the Grand Banks over April-November 1981, and show oscillations with time

B. Petrie, Bedford Institute of Oceanography, personal communication, 1985.
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scales near 5 days. The overall decorrelation time scales vary between 20 and
40 hours. Large sampling errors in both data sets are evidenced by the

convergence of the autocorrelation function to a value below unity at small

time lags.

2.2 RAW ICEBERG VELOCITY STATISTICS

Iceberg trajectory and surface wind data for 1984 and 1985 were acquired
from the east coast operators. The trajectory data were obtained by wvisual
and radar fixes from vessels, oil rigs, and aircraft; most observations were
from the region (46 - 48°N. 47 - 4QOW) generally to the east of the Hibernia

site.

In estimating velocities we have excluded the trajectories of icebérgs
that are either grounded (immobile for several subsequent fixes), or under
tow, or where successive positional fixes are more than 6 hours apart.
Histograms of the velocity estimateé were then obtained for the Labrador
Current and Hibernia regions and outliers (velocity estimates beyond 4 times
the standard deviation, or about 2 knots) were removed. As shown in
Table 2.2, this process led to a reduction (by about 80%) in the number of
usable tracks and velocity estimates. Figure 2.1 shows the trajectories
retained for 1984 and 1985. The spatial distribution of the data differs for
the two years. The wind data used were the 6-hourly gridded surface (.10 m)

analysis products used operationally on the Grand Banks for 1984 and 1985.
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TABLE 2.2

Summary of iceberg velocity estimates

Observations Raw velocity estimates Usable velocity estimates
1984
observations
from
vessels 2620 803
rigs 1607 332
aircraft 1247 158
others 0 0
total 5474 1293
1985
. observations
frqm
‘vessels 2254 430
rigs 748 114
aircraft 589 7
others 748 14
total 4339 563
Only icebergs with two or more position fixes are used to obtain raw

velocity est

imates. From these

grounded, or based on fixes more than 6 hours apart were eliminated. Out

are further

removed from the

remaining population

to

selection of usable iceberg tracks and velocity estimates.
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After editing, the‘ global mean and standard deviation of iceberg
velocities were coméuted and are shown in Table 2.3. ‘Iceberg velocity
estimates were also grouped into subquadrants about the Hibernia site at
radial intervals of 50 km. Component standard deviations (northward and
eastward) and means of velocity were then determined for each area. To
increase reliability, an average of the 1984 and 1985 results, weighed by the
number of observations in each year, was made to obtain the estimates

presented in Figure 2.2.

The mean velocities suggest a clockwise flow about the Hibernia site with
some exceptions {(flow for the southeast (50, 100) km subquadrant opposes the
expected southward flow of the Labrador Current). The component vclocity
variance is apparently larger (0.20 to 0.30 m/s) tﬁan that reported by Isenor
and Petrie (1985); however, one must note that we have not yet allowed for
tides, inertial oscillations, and the high noise level in our data, and Isenor
and Petrie (1985) have effectively filtered all high-frequency motion through

daily averaging.
2.3 TIDES

Garrett et al. (1985) found very good correspondence between the tidal
mﬂtion of icebergs and current meter observations. For the Grand Banks, tidal
velocities are known to depend significantly on local water depth; however,
the small number of available iceberg velocity observations only permits a

global estimate of tidal constants. These estimates agree qualitatively with
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TABLE 2.3

Mean and standard deviation of raw and residual iceberg drift (ﬁ/s)

_ —3 0.5 —3 0.5
Source u v (u'®) (v'®)
1984 raw 0.00 -0.03 0.27 0.32
1985 raw 0.08 -0.01 0.27 0.28
1984 residual 0.00 -0.11 0.24 0.28
1985 residual 0.01 -0.05 0.25 0.26
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current meter observations but are plagued by the effects of observational
noise and épatial variability. It was therefore decided to use tidal
constants derived from numerical experiments (de Margerie and Lank, 1986) in
subsequent analysis. These numerical experiments show good agreement with
observations and describe tidal flow with a spatial resolution in the order of
7 km. . For thé present purpose this information was reduced to a 20' by 20'
grid covering the eastern Grand Banks. As an example the constants for the M2
constituent are given in Table 2.4. The M2, N2, S2, 01, and K1 constituents
account for most of the tidal variance and are included in our analysis.
Tides have been found to account for up to 50% of the iceberg velocity
variance on the shallowest parts of the Grand Banks (Petrie, 1982). Near the
edges of the banks, the decrease in tidal signal with increasing water depth,
combined with the higﬁer overall variance, redﬁces the tidal effects to an

insignificant level.
2.4 ICEBERG/WIND VELOCITY CORRELATIONS

An important part of the iceberg motion can be attributed to wind, either
directly through drag above the water line, or indirectly by the currents that
the wind generates. To determine the influence of wind we will analyse the
iceberg motion with the removal of the tidal signal. Later the wind signal

itself will be removed to examine the statistics of the residual drift.
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TABLE 2.4

Tidal constants for the M2 constituent

U component amplitude (phase) in m/s (degrees GMT)

47°30' |7 0.059 0.052 0.048 0.043 0.039 0.020
( 59) ( 56) ( 53) ( 51) ( 51) ( 54)
47%10' ~|”0.078 0.065 0.058 0.048 0.038 0.014
{ 55) ( 53) ( 51) ( 51) ( 53) ( 59)
46°50" ~|70.097 0.078 0.067 0.052 0.034 0.010
{ 50) ( 48) ( 46) ( 45) ( 46) ( 51)
46%30' ~|T 0115 0.089 0.075 0,057 0,033 0011
( 45) ( 42) ( 38) ( 33) ( 24) ( 4)
46%10" "0 127 0.098 0.080 0,040 0,020 0,017
( 40) ( 37) ( 34) ( 30) ( 25) ( 18)
45%50" ~
49%00" 48°40" 48°20" 48°00" 47%0" 47%20" 47%00"
V component amplitude (phase) in m/s (degrees GMT)
47%30' ~|” 0.029 0.022 0.020 0.018 0.015 0.004
(341) (327) (314) (304) (298) (260)
4710 |7 0,043 0.035 0.030 0.023 0.015 0.003
(327) (319) (311) (305) (302) (181)
46050' - 0.061 0.050 0.042 0.032 0.017 0.007
(314) (307) (301) (295) (284) (179)
46°30' ~|T0.082 0066 0057 0,044 0.026 0.011
(303) (297) (292) (284) (269) (213)
46°10' T} 0.100 0.082 0.068 0.041 0.014 0.010
(297) (291) (288) (285) (285) (287)
45%50" ~
49°00" 48%40" 48°20" 48%00" 47%40" 47%20" 47%00"
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As noted in Chapter 1, the iceberg velocity (after removal of tides); Ub'

is assumed to be linearly related to winds by:

Ub = Ur + awa (2.1)

where Ub' Ur' and Uw are the iceberg velocity, the residual velocity, and the
wind velocity vectors, respectively, while aw is a tensor assumed to be
constant. The usefulness of the linear response model (equation 2.1) may be
examined by considering the cross-correlation of iceberg velocities and winds,

defined as:

; — e 2
= Uw.(t) Ub.(t+T) / | Uw. Ub )
i j i J

Rw.b,(r) (2.2)
1]
where primes denote removal of global means (overall average with no regards
to spatial variability),
overbars denote mean values,
i and j subscripts range from 1 to 2 to denote x and y directions, and

7 is a time lag.

Substituting equation 2.1 into 2.2 we obtain:

R>(r)=[aR(r)+ch(‘r)]p
Wby Y11 "1"1 Y12 ¥1%2
R . (1) = [a R () + a_ R (r)] p (2.3)
W,b Y11 %" W12 W%
where 8 = U‘2 / U'z, and similar expressions can be derived for R and
w, b w_.b
i J 22
R . For an isotropic flow we can show that:
w,b
172
R = R and,
Woby Wb,
R = -R
wlb2 wzb1
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Results for the 1984 data are . shown in Figure 2.3. The reasonably

symmetric peak in Rwlb (and Rw b ) implies that « Rw b (and &« R b )

1 2°2 “12 ¥1%2 21 "2"1

are relatively small because Rw b must be an odd function of 7, assuming an
12

isotropic wind field. Furthermore, the fact that R (and R ) are near

w2b1 wlb2
zero indicates that aw Rw b aw Rw b’ etc. must be near zero, so that
11 271 12 21
aw ~ dw , aw o~ aw ~ 0 and Rw b= Rw b= 0. The results reinforce the
11 22 12 21 172 271

model assumption of isotropic response and agree with the simple downwind

drift found by Garrett ct al. (1985) on the Labrador Shelf.

Results for the 1985 data are presented in Figure 2.4. The Rw b and
171

Rw b are consistent with the 1984 data; however, the cross-component
22 ’

correlations show a consistent non-zero signal which mirrors the co-component
relationship. This result implies again that R = R = 0 but aw and a

12 Y24 12 %21

although smaller than aw and aw , are non zcro. It should be noted that
11 22

the response is non-isotropic and inconsistent with Coriolis rotation, because

north winds cause a component of drift to the left and east winds cause a

component of drift to the right.

The 1985 response is difficult to explain without further study. but may
be associated with the different location of most datq in that year (more to
the north east). In the absence of a better understanding for this phenonema,
the 1985 data will be treated as anomalous, and for the sake of simplicity we

will set « = aw = 0 and aw = aw , as indicated by the 1984 data. The

Y21 Y12 11 a2
tensor aw is then equivalent to a simple scalar coefficient. For 1984 and
1985, aw is estimated at 0.016 and 0.020, respectively. The average value of
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Figure 2.3. Wind/iceberg velocity cross-correlation function for 1984.
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0.018 is. the same as that found by Garrett et al. (1985) from an extensive
analysis of iceberg observations on the Labrador Shelf, and will therefore be
used for our Grand Banks iceberg prediction model as well as in removing the
wind-driven component of motion in the analysis to follow. Removal of the
tidal and wind-driven component reduces the global standard deviation for each

velocity component from 0.30 m/s to 0.26 m/s.
2.5 ICEBERG VELOCITY AUTOCORRELATIONS

Denoting u and v to be the two components of residual iceberg velocity Ur

(tide, wind, and mean flow removed), we define:

R (r) = WEYW(E7) / u’ O (2.4)
— .
Rv(r) = v(t) v(t+r) / v (2.5)
to be the Lagrangian component velocity correlations. Estimates Ru and Rv

were obtained by forming the product of all lagged pairs of residual velocity
for each iceberg followed by an average over all pairs. The products were
then averaged and normalized for each lag. 1In performing the averages we
have, because of the lack of data, ignored the spatial variability of
statistics so that the overbars and primes in equations 2.4 and 2.5 denote
computation or removal of global means. Because of the spatial variability of

the statistics the correlations presented may be somewhat contaminated.

As discussed in Appendix B, positional error results in a scaling of the
autocorrelation function, which for small lags tends to A R(0) - 0.5( 1 - A )
where

2 2 e2
A = u / (u, + 2—=) (2.6)
b b Ata



where u_ is the true iceberg component velocity variance,

wl o

e is the variance in position error, and

4t is the observational time intérval.
with a similar expression for the v component. At lags greater than one the
autocorrelation is simply scaled by A. At small lags the true autocorrelation
function should tend to unity, however, the 1984 and 1985 data show values of
0.40 and 0.55, respectively. Corresponding A's are 0.6 and 0.7, with a
weighted average of 0.65. With the residual variance of Section 2.4 this
implies a true standard deviation for each velocity component of 0.20 m/s and
using a typical observational interval of 2 hours the positional error is in
the order of 750 m. Compared to the standard deviations for the raw data, the

values with tides, winds, and noise removed are about 50% lower.

With the effect of noise so determined, the estimates of correlation were
reséaled by A and then smoothed with a running mean with weights of 0.25,
0.50, and 0.25. The results for 1984 and 1985 are shown in Figure 2.5. All
autocorrelation functions exhibit low-frequency oscillations. The 1984 data
shows wavelike motion at a period of about 180 hours (estimated as four times
the first zero crossiﬁg period) in both velocity components. This result is
very similar to those of Birch (1985), even though his drifters show
oscillations at about 160 hours. The 1985 data are considerably more complex
and difficult to interpret. The difference in correlation for the two
velocity components indicates considerable anisotropy, with the v

(north-south) component showing a strong diurnal signal. The anomaly of the
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1985 data may result from the different location of most tracks which are
ncarer to the shelf edge. The strong diurnal signal in the v component
corresponds to motion along the isobaths and could be the signature of diurnal

shelf trapped waves1

The autocorrelation functions were plotted on a logarithmic scale and
were fitted visually by straight lines, the slopes of which gave a
representative decorrelation time. Al]l data fit reasonably with a 1—1 = 25
hours for thevLagrangian time scales, although the uncertainty for the 1985
data 1is considerable. The corresponding model autocorrelation function is
given by:

R(F) = e ' 7, with 41 = 25 hours

fitting a model which includes the wavelike motion‘exhibited in the 1984 data
yields

- - -1
R(7) e v cos(2mr w 7), with 7 1 = 45 hours and ® = 180 hours.

In view of the long time scale of the oscillatory motion compared to the time
of concern in iceberg forecasting, it can be concluded that a simple

exponential will adequately parameterize the autocorrelation function.

2.6 INERTIAL WAVES

Both current meter and iceberg estimates of variance include a

contribution from inertial waves. At the latitude of Hibernia the period of

1
B. Petrie, Bedford Institute of Oceanography, personal communication, 1985.
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inertial motion is about 17 hours. The signature of inertial waves iﬁ the
autocorrelation funétion can be seen as an oscillation at the inertial period
especially in the cross—correlations of the u and v components. Current meter
data for the Grand Banks clearly exhibit oscillation in the inertial band. An
analysis of current data was undertaken for an instrument moored 20 m deep
using a wave-insensitive instrument near Hibernia (46051'25"N, 48045'36"W). in
spring of 1982. The analysis consisted of evaluating variances and
autocorrelation functions (Figure 2.6). Assuming that inertial oscillations
are independent of other motion, the observed autocorrelations can be modelled
by:
R(T) = Ajcos(f7) e 2 + A R'(T) (2.7)

where R'(7) is the part of the signal not resulting from inertial waves,

A1 and A, are the proportions of the total variance attributable to

2
inertial and other motions respectively,
?;1 is the inertial decorrelation time, and
f is the Coriolis frequency.
The parameter ?;1 and the proportion of variance attributable to inertial
waves were evaluated as 60 hours and 0.2, corresponding to an rms component

velocity of 0.07 m/s.

~ As seen previously in Figure 2.5 the iceberg autocorrelations do not
exhibit inertial oscillations, confirming that the contribution of inertial
waves to the iceberg motion is small and is probably obliterated by the noise

level in the data.
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2.7 SPATIAL DISTRIBUTION OF RESIDUAL VELOCITIES

To determine the spatial variability of the mecan and standard deviation
of iceberg velocities, observed velocity estimates were grouped into cells of
a 20' by 20' grid within the study area. The effect of tides, winds, and
noise level discussed earlier were removed and the estimates of Figure 2.7
were obtained. Standard deviations showed no systematic differences in the x
and y components and the radius of circles shown in the figure correspond to
the mean of the x and the y variances (the parameter c in Chapter 1 is cqual
to 1.42 times this value). It should be pointed out that the number of
observations indicated in each cell does not represent the available degrees
of freedom, because consecutive velocity estimates are not independent. Based
on the mean observational interval, the Lagrangian. decorrelation time scale
and the typical number of observations per track, we estimate that the number
of degrees of freedom is about one-fifth the number of observations. Using
this figure we find that most of the mean velocity estimates previously

presented in Figure 2.6 are only marginally significant at the 63% level.

We can nevertheless infer a mean flow of 0.20 to 0.35 m/s along the 200-m
isobath. A maximum in variances occurs near the edge of the bank at 46°30'N
with standard deviations of over 0.30 m/s. The standard deviation in the
Hibernia region varies between 0.10 m/s and 0.17 m/s and agrees with estimates

from current meter data presented earlier.
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CHAPTER 3 MODEL_CONSIDERATIONS FOR THE GRAND BANKS

Several enhancements of the original model (Garrett et al., 1985) were
necessary for the Grand Banks implementation, because of the important spatial
variability of iceberg statistics, the accuracy of observations, and the mode
of operation of oil rigs on the Grand Banks. These special considerations,

together with model verification, are discussed below.

The properties of observed iceberg tracks presented for the Grand Banks
in Chapter 2 differ in several respects from the Labrador Shelf data used in
Garrett et al. (1985). As a result a few modelling procedures have been

revised.

A main feature of iccberg drift on the Grand Banks is spatial variability
in both variance and mean flow. To accommodate this, the operational model
uses tidal currents, mean flows, and variances, defined on a grid. Iceberg
trajectories and confidence intervals are then predicted using values

corresponding to the location of the iceberg.

The 1984 and 1985 Grand Banks data also showed greater noise
contamination than those of Garrett et al., which has implications for the
confidence attributable to iceberg prediction. because it increcases the
uncertainty in the initial iceberg velocity, U(0), needed for the statistical

componcent of the model. To decrecase the effect of observational noise on



predictions, two possible schemes are considercd. The first uses scveral
velocity estimates as predictors, whercas the second uses one velocity
estimate based on observations taken a longer time apart. In general both
will give similar but small improvements in prediction (about 10% reduction in
residual error), because a large part of the uncertainty in iceberg position
is attributable to the random naturec of iceberg motion itself. In any case
the second alternative 1is computationally simple and is implemented in the
model. The model actually allows variable time intervals betwecen position
observations, choosing the optimum interval when morc than two observations
are available. 1In some cases, this selection can result in a substantial

improvement in prediction.

The simple probability calculation proposed‘by Garrett ct al. (1985) to
calculate the chance of intersection of the iceberg trajectory with a target
of known dimension was enhanced to include the effect of all velocity
components (tidal, wind driven, etc.) as the iceberg approaches the target.
The model computes the probability at hourly intervals during a prediction,

summing them to obtain the total probability of impact.

General considerations indicate that the use of rig-observed currents
could be used to improve predictions, especially in view of the large apparent
observational error in iceberg sightings. The improvement, however, is likely
to be small, but has not been investigated in this study. At present the

model cannot accommodate rig-observed currents in the prediction scheme.
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Model verification shows good agreement between predicted and observed
tracks. Deviations between predicted and observed positions, although large,

are within the confidence intervals computed by the model.
3.1 INCLUSION OF SPATIALLY VARYING VELOCITIES

In modelling iceberg drift in our study area, one must acknowledge the
spatial variability of means and standard deviations which may cause changes
of a factor of 5 and 3 respectively. The direct implication of this
variability is obvious if one considers that, near the edge of the Grand
Banks, the mean flow can be the principal component of motion and that its
neglect would cause major errors in the prediction of iceberg position. The
estimate of confidence intervals for predictions ig directly proportional to
the standard deviation of velocity so that neglecting spatial variability
could result in serious misinterpretation of model results. To include these
first order effects in the prediction scheme we have assessed the mean and
standard deviation of velocities in 20' by 20' cells within the study area
{Figure 3.1). These values are based on the results of the previous section,
with some modifications. The standard deviations are the same as those
observed, except on the shelf in cells where fewer than 20 observations were
avéilable. In these cases, new estimates were computed to include the data
from adjoining cells. Mean flows on the shelf are as observed, again with the
exception noted above. Because the flows on the shelf are relatively small,
the uncertainty in these estimates would not significantly affect predictions.

Ncar the shelf edge, on the other hand, the Labrador Current causes an
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important mean drift component. To improve the statistical reliability of the
mean flow estimates in this region, the shelf edge was bounded by circular
arcs about Hibernia (see Figure 2.2), and a mean flow of 0.25 m/s along the
isobath was computed. This pattern is consistent with other studies (Petrie

and Isenor, 1984), and was used to estimate the mean flow near the shelf edge.

For iceberg predictions the model will use values of mean flow U and
variance c2 corresponding to the cell where the iceberg is located. It should
be noted that spatial gradients in mean flow and variance can lead to higher
order effects such as shear dispersion and an added mean transport in a manner
analogous to turbulent entrainment. These are discussed in more detail in

Appendix A and are shown to have negligible effect.
3.2 OPTIMUM CHOICE OF PREDICTORS

As discussed in Section 1.5, in the presence of observational noise in
past iceberg observations there may be an advantage in using several velocity
estimates in the statistical prediction equation. Alternatively one may
consider combinipg several past Qelocity estimates into a mean wvalue to
increase the confidence of a single predictor. Although the second
alternative is computationally more attractive, the former may actually
provide better accuracy. Both possibilitics are considered in Appendices B
and C respectively. The conclusions depend essentially on the observational
time interval 4t, because, as indicated in the following, the noisc level in

velocity estimates used as predictors depends on this interval.
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In the case where we have a set of velocity estimates obtained from
successive position observations, taken 4t apart, and each with an

uncorrelated error, €, we have in one dimension, and with mean flow rcmoved:

1]
b
1
»

u + e voel ) / 4t (3.1)

on n+1 n n+1

where u_ is the observed variance.

o N
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u is the true variance, and

2, . s
is the variance of positional errors.
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2€2 ]-1
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Substituting 2 52/ At2 for eﬁ in equation 1.8 gives A = [ 1+
Therefore the factor A, representing the relative importance of observational
noise in the prediction, depends on 4t. For the 1984 and 1985 data sets, A
equals 0.65 with a representative 4t of 2 hours. If the observational
interval would have been half or double this value (1 or 4 hours), A would be

equal to 0.34 or 0.88, with drastic implications on the confidence of

predictions.

In Appendix B it is shown that for observational errors and intervals
similar to those of the 1984 and 1985 data, the advantage from using several
predictors is marginal, typically reducing the prediction uncertainty by 5% or.
10%. For the case of one hour intervals the advantage of wusing several
predictors is much greater. Appendix C considers the possibility of simply

increasing the observational interval to increase A, and therefore increase
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the confidence in a single term prediction for times which are small when
compared to the Lagrangian time scale. Doubling the observational interval is
equivalent to using the average velocity over the first two intervals and
equation 3.1 becomes:
uy = | Xy, — X o# 63 + 61 ) / 24t (3.2)

The increase in accuracy using this method is almost the same as using several
predictors; however, computations are much simpler. Obviously there must be a
limit to which we can increase the observational interval, since if it is
very large the resulting velocity estimate will bear little relevance to its
present or future velocity. This limit depends on the decorrelaﬁion time
scale, 7, the residual velocity variance, 02. and the positional error, e.
From the Grand Banks data set we determine that the optimum time interval is
5.5 hours (sce Appendix C). Using an interval of ﬁp to twice this does not

significantly degrade predictions; however, the prediction confidence interval

can increase drastically for smaller values.

For our operational model we choose the second, computationally simpler
method of increasing prediction confidence, given finite noise in the position
observation. In calculating the iceberg velocity for a single predictor. we
use the last position fix and the earliest fix with an interval not exceeding
6 hours (i.e., if we have fixes at 11:00, 12:37, 14:00, and 16:15, we would
use only those at 11:00 and 16:15). The predictor error and confidence
intervals are then calculated using the appropriate value of 4t. It is quite
probable that the positional error ¢ can be reduced by careful measurement if

the iceberg is perceived as a real threat. The model therefore allows the
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user to change this parameter. The software is delivered with the positional
error value of ¢ = 750 m corresponding to the 1984 and 1985 data sets, and

caution should be used in changing this value.
3.3 PROBABILITY CALCULATIONS

Garrett et al. (1985) suggest a simple method of evaluating the
probability of an iceberg approaching the rig within a certain radius. By
taking the radius (R) as equal to the rig size, this calculation may provide a

way of comparing predicted impact probability to allowable risk level.

The approach is based on the error calculation for predictions (equation
C.5). This error gives the standard deviation of éctual iceberg position from
the most 1likely tréjectory. The error is assumed to have a normal
distribution and is used to compute confidence intervals for the predictions.
It can also be used to assess the probability density of iceberg occurrence
as:

-2

P = E e—sz/E2

(3.3)
where s is the distance from the most likely predicted iceberg position. The
quantity p' expresses the probability of finding an iceberg per unit area.
integrating this quantity over a circle of radius R gives us the chance of
finding the iceberg within the critical circle. Assuming that p' is wuniform
over the circle, we can calculate the likely fraction of time an iceberg would
be within the critical radius‘as:

T - (T ar® pr o odt (3.4)

where T is the forecast period. Denoting the average time required for an
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iceberg to cross the critical circle by Tp. we can calculate the number of
times the iceberg is likely to cross the critical circle (this is equivalent
to the probability of iceberg impact on the rig) as Tc/Tp’ Assuming that the

iceberg velocity as it crosses the critical circle is normally distributed

3/2
with zero mean and variance c, Garrett et al. (1985) estimate Tc as "2 CR
yielding a probability of impact of:

2,.2
p = on %72 ¢ gTe's /E (3.5)

Implicit assumptions in this formula are that:
i) p' can be considered uniform over the critical circle,
ii) iceberg trajectories are relatively straight as they cross the
critical circle, and

iii) the iceberg has no net cxpected velocity.as it approaches the rig.

Assumption i) implies BEE << 1. Using equation C.2, from Appendix C, for

E
the prediction error, E, with representative parameters for the Grand Banks,
we find that E reaches 5000 m within a few hours of predictions. With an
effective rig radius of 300 m we therefore have % < 1. It can also be shown
that for practical purposes s ¢ E for icebergs close enough to pose a

significant threat to the rig. For the Grand Banks operation, assumption i)

is therefore appropriate.

Using again a rig radius of 300 m with a typical iceberg spced of
0.25 m/s for the Grand Banks, we find that an iceberg would cross the critical
circle in an hour. As seen in Chapter 2 this time is short compared to the

time scales of motion on the Grand Banks, and, for all practical purposes, the
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path of icebergs can be considered straight as they traverse the critical

circle.

On the Grand Banks it has been shown that tides, winds, and mean flows
contribute significantly to iceberg motion, therefdre we cannot assume that
the iceberg has no expected velocity as it traverses the critical circle. The
velocity of the iceberg as it approaches the rig can be given by:

U = 6 + Ce (3.6)
where & is the expected velocity, and
c ¢ is a random velocity with standard deviation c.

The expected velocity, 6. is given by the predicted iceberg velocity plus a
component related to the iceberg position relative to the rig. The latter is
required to account for the fact that if the‘iceberg enters the critical
circle it is likely to have an additional component of velocity toward the rig
(i.e., with the predicted position at 5000 m from the rig after 10 hours, if
the iceberg were to hit the rig after these 10 hours an unpredicted velocity
component of approximately 500 m/hr toward the rig could be implied).

Taking 6 into account the average time to cross the critical circle is
given by:

T = [®o.5n Rpv) av
P—l 51 8 P(V)

where P(V) is the iceberg speed probability distribution given by:

0 2, 2 .2, ., 2
P(V) = lzn v e"((U—VCOSG) + V°sin“8)/c 40

2
c

S
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These definite integrals can be solved to yield:

2,2
T = 0.5 n1.5 R c—l e—.SU /c

t2, 2
p Io(.SU /c7) (3.7)

where I0 denotes the zeroth order modified Bessel function of the first kind

(Abramowitz and Stegun, 1964, p. 374).

In the actual model, the radius R is set equal to the sum of the rig and
iceberg radii, and the probability of impact is calculated at each time step,

4t = 1 hour, as:

~2 2
P = At [ [aR2p' J/[o0.5a8gete S0/

~2, 2
4t 10(.50 /c7) 1 ] (3.8)

The chance of impact is therefore calculated as a function of time, and Rdt is

cumulated at each model time step to obtain the total probability of impact.

3.4 RIG-OBSERVED CURRENTS

In view of (i) the noise present in position and hence velocity

measurements for an iceberg and (ii) the fact that the Eulerian timescale T

is greater than the Lagrangian timescale TL { 7~1 in earlier sections), it

E

seems possible that the use of current meter information at the rig or
platform itself might significantly improve the predictability of an iceberg

trajectory.
Let Uo denote the velocity of the iceberg at t = 0 (after removal of the

mean flow, the effect of the wind and the tides), Ur the current at t = 0 at

the rig (also minus mean flow. winds, and tides) and Ut the residual velocity
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of the iceberg at time t (i.e., Ut is what we seek to predict), as showﬁ in

Figure 3.2. One could consider a two-term predictor:

= [o .
Ut 1 U0 + 2 Ur (3.9)
and solve for the coefficients dl , d2 that minimize the mean square error in
Ut' This correlation will require knowledge of functions, between the various

pairs of velocities, which we might denote symbolically as Rot (which is just
the Lagrangian autocorrelation, RL). Rof (which is the Eulerian correlation at
zero time lag and spatial separation Xo) and th. This last correlation is in
principle a hybrid Euler-Lagrange quantity and is not easily determined. We
could approximate it by the Eulerian correlation function RE (Xr, t) for time
lag t and spatial separation Xr’ where Xr is the distance from the rig to the

optimal prediction of the iceberg's position.

A detailed treatment of the problem would require attention to the
two-dimensionality of the correlations and would also have to adjust for the
mean flow, as discussed later. For the moment it seems clear that wusing Ur
will be beneficial if RE(Xr’t) > RL(t). Indeed for small times, t, we can
expect RE(Xr't) < RL(t) so that one could consider using a one-term Lagrangian
predictor at first, possibly switching to a one-term predictor using the

rig-observed current at some later time.

Reasonable models for RL and RE are:

-t/T -|x /L, -t/T
R (t) = Ae L and R, (X . t) = e r B E (3.10)

Where A allows for noise in iceberg velocity estimates, we have assumed that

the rig residual current corresponds exactly to the residual current affecting
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Figure 3.2.

Definition sketch for iceberg and rig-observed velocities.



iceberg motion, and we have ignored the distinction and difference between

longitudinal and transverse velocity components in the Eulerian correlations.

Rig currents are thus likely to be valuable if:
X\ < Lg ( &/T, - /T - In A). (3.11)

where LE is the Eulerian length scale. For the Grand Banks we may take

A =~ 0.8 (assuming the optimum 4t for position differencing, see Appendix C),

Ty

for rig currents to be valuable requires !XO! < -30 1InA = 6.5 km. It is

R

25 hours, with rough estimates of TE =~ 40 hours and LE ~ 30 km, so that
unlikely that lxol will ever be this small. For t = 24 hours we would rcquire
!Xr! < 17.5 km, which makes it appear that rig currents could indeed be
valuable for the later stages of prediction. However, it must be remarked
that, in the presence of a mean flow U, the corréct separation to use in the
Eulerian correlation is not ]Xrl but rather |Xr - ﬁ't] which might be somewhat
greater than IXP!. After 24 hours no predictor is very successful. The value
of rig currents is further reduced if there is vertical shear of the current

and one does not know the appropriate depth average to apply to a particular

iceberg.

In summary, it does not seem at this stage that the use of rig-observed
currents would lead to a significant improvement in trajectory prediction.>but

the topic has not been studied in detail.
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3.5 MODEL VERIFICATION

To wverify the correct operation of the model we have compared predicted
and observed iceberg trajectories for 1984 and 1985. Figure 3.3 shows a
cumulative comparison of predicted confidence intervals with the deviations
between observed and predicted positions. As can be seen the observed
deviations are less than the computcd confidence intervals, indicating that
the model performs slightly better than anticipated. Figure 3.4 shows two
sample plots of an observed iceberg track, overlaid on the predicted

trajectory and confidence interval.

It should be noted that the verification herein does not use an
independent set of data (i.e., the same data are‘used to determine the model
parameters and for verification). This verification exercise is therefore
aimed more toward verifying the correct implementation of our conceptual
iceberg model. By not including an independent data set for verification we
implicitly assume that mean iceberg behaviour is well characterized by the
available data, and that this behaviour will not change in the future. The
fact that the model gives adequate results for both the 1984 and 1985 data,
which we have seen in Chapter 2 to be markedly different, lends crgdibility

and confidence to our procedure.
The actual prediction error depends on model input (number of fixes and
time intervals), as well as iceberg location. Figure 3.5 is a dimensional

plot of error as a function of time, the nondimensional version of which can
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be found in Appendix C. The error depends on the local velocity variance,
which varies spatially, so that two scales are given, corresponding to the
lowest and highest variances found in the study area. The two curves
correspond to ﬁrediction error given a single position fix (worst case), and
given two or more fixes over a period of 6 hours (optimum case). As can be
seen, for a 10-hour prediction, the standard error can range between 1.5 and 6
nautical miles; after 25 hours the error ranges between 4 and 14 nautical
miles (the radius of the confidence circles in Figure 3.4 are 1.65 times the
standard error). These errors are admittedly large if we consider that an
iceberg would typically move by 10 or 15 nautical miles per day. This error,
however, is intrinsically linked to our present inability to forecast oceanic
eddy motion, and will persist in any iceberg prediction scheme until major

advances are made in current forecasting techniques.
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CHAPTER 4 MODEL IMPLEMENTATION

The model presented in Chapter 1 and extended in Chapter 3 has been
implemented on an IBM PC microcomputer. The language of implementation is
PASCAL, chosen because it offers a superior development tool and rgsults in an

efficient machine code for microcomputers.

In its present implementation the model is applicable for icebergs
located between 45050' - 47030'N and between 470 - 490W. The - only intrinsic
assumption in the model is that the behéviour of icebergs on the Grand Banks
will not change systematically in the future, which seems a reasonable

assumption.

A significant advantage of the present mpdel over others is that it
provides estimates of probability of iceberg impact upon a platform. By
calculating this probability as a function of time the model also computes an
optimum time fér evasive action by requiring that the chance of impact never

cxceeds the allowable risk (set by the operator).
4.1 MICROCOMPUTER FOR IMPLEMENTATION

The model is implemented on an IBM PC (or compatible) computer. These

computers are widely available and easily serviced. Rugged portable units can
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be purchased at a competitive price compared to a simple graphic terminal
which would be required for implementation on the more common shipboard

mini-computers.

PASCAIL was used as the computer language of implementation principally
because it is in many respects a superior development tool for micros and yet
retains a significant level of universality. The model makes extensive use of
graphic display, pop-up menus, and special function key entries, all of which
contribute to an ease of operation and of interpretation. Although PASCAL
compilers are available for most computers (mainframe, mini, or micro)
hardware-specific features of the IBM PC make it necessary to use non-standard
language elements. The model is, therefore, not easily portable to other
systems. The numerical algorithm section of the médc] is coded in standard
PASCAL and could be ported to cher installations; however, it represents a
relatively small portion of the code and of effort involved in development.
The model 1is delivered in compiled version (executable machine code) and can

complete most predictions within a minute.

4.2 MODEL ASSUMPTIONS AND APPLICABILITY

The only implicit assumption in the model is that the behaviour of
iccbergs will not change systematically in the future. This assumption seems
reasonable, because the model has been successfully verified against 1984 and
1985 data, which show marked differences. We do not expect interannual

variability to cause serious problems.
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Several other assumptions concerning second-order effects of spatial
variability and observational noise have been made, and shown to be adequate
for the Grand Banks (see Chapter 3 and Appendices A and B), and therefore
should not be of immediate concern to the model wuser. The principal
limitation is the restriction to icebergs bctween 45050‘ - 47030'N and between
. 47o - 49°w. Although the model will provide predictions for icebergs outside
this region (using tidal constants, mean flow, and variance defined for the
closest grid cell) the results may not be very accurate. Another 1limitation
involves the extent of the forecasting period. Although the model will
provide forecasts for any length of time, the wind forecasts used in the
prediction only extend 48 hours into the future. Predictions for times
greater than this use the wind forecast at 48 hours, and will decrease in

accuracy as this wind speed becomes less applicable.

It should be kept in mind while using the model that prediction accuracy
is increased as more position fixes become available for a particular iceberg,
for up to 6 hours (i.e., the model uses only fixes within the last 6 hours).
Because of this and also because the iceberg drift will actually change with
each observation, the model predictions will change as new fixes are entered.
Therefore, it is recommended that a tight monitoring schedule be maintained

for any iceberg posing a significant threat.
4.3 DETERMINATION OF OPTIMUM TIME FOR EVASIVE ACTION
The model computes the cumulative probability of iceberg impact upon the

rig. This probability may in itself provide valuable information by giving a
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measure of the threat posed by a given iceberg, but it lacks an element of
timing which is required for decision making. To provide this timing
information the model computes the probability of impact as a function of
time. This function can be related to the allowable risk and the necessary
leAd time for evasive action as shown in Figure 4.1. In this diagram

important parameters are:

- T . ., the amount of time available before undertaking evasive
decision :
action,

~ Ptotal' the total cumulative probability of iceberg impact,

- P , the allowable risk level,
allowable

- Tallowable' the time at which Ptotal exceeds pallowable'

- Tmax' the most likely time of impact, and

- Tlead' the lead time required to complete evasive action.

These parameters, except for Tlead and Pallowable’ depend on the most repent

iceberg observations and may change as new position fixes become available.

In cases were Ptotal < Pallowable . no evasive action is recommended and
Tallowable as well as Tdecision are undefined. Otherwise Tdecision is given
by:

Tdecision = Tlead‘ Tallowable ), or
(T -7 )}, whichever is smallest.
lead max

This definition will ensure that the allowable risk level is never
exceeded and that evasive action is taken early enough to be effective at the

most probable time of impact.
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for evasive action.



Several lead times can be used in the calculation, corresponding perhaps
to various stages of evasive procedures. For example, 24 hours of lead time
may be required to pull up the pipe etc. whereas only 4 hours may be required
to drop the last anchors and move. The model allows setting two independent
lead times labelled as Phase 1 and Phase 2 but uses a common allowable risk

level. The model computes the two values of T , which are labelled

decision
Lead Times for Phase 1 and Phase 2 in the model output. These are in fact
estimates on how much lead time is Jeft before a decision must be made.
Evasive action is probably best delayed until this time because new position

fixes obtained in the interim will improve the prediction and may reduce the

probability of impact.

The'calculation of allowable risk is an actuafial problem best undertaken
by the operators, because they are more knowledgeable of the implications of
rig loss. We would like to point out that although such calculations may seem
cyﬁical. allowable risk is always considered either explicitly or implicitly.
The use of safety factors and/or worst case scenarios is equivalent to
selecting a 1low allowable risk, which in iceberg management is rarely
explicitly calculated, even though it is common practice in aspects of
operational or design engineering. From an actuarial point of view, it is
much preferred to select the allowable risk level explicitly, based on cost
analysis or other specific guidelines. As an example, an allowable risk level
of 1.0% is adequate for a ratio of rig disconnect to rig loss costs of 1/100

(i.e., the typical rig disconnect cost may be $1 000 000 for 5 days of down
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time for evasive and reentry procedures, whereas the cost of rig loss would be
$100 000 000). An alternate method of computing allowable risk could consider
that the probability of rig loss is not to exceed one chance in a hundred
years (rp = 100). If the mean number of icebergs threatening operations on

the Grand Banks, n, is 100 per year, then the allowable risk for an individual

iceberg would be 1 - (1 - ?%) /n

, which for rp >> 1 is approkimately or

n rp

0.01%, given the present parameters.
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CONCLUSIONS

The conceptual model for iceberg prediction, proposed by Garrett et al.
(1985), has been implemented for the Grand Banks. Although several
enhancements have been necessary for its operational implementation, the
essence of the model remains the same. The usefulness of such a forecasting
tool depends not only on its theoretical foundation but also on practical
implementation features ensuring ease of use and clarity of the forecast
products. To this end the design process has included the production of
several prototypes that have been reviewed by representatives of the oil
industry and government with an interest in improving the capabilities of
forecasting iceberg trajectories. The model ‘shows promise as a useful
operational tool; however, this promise will only be confirmed after

verification and field implementation of the model.

This analysis, specifically to determine the drift characteristic of
icebergs, is of considerable interest not only for occanographic purposes, but
also for other practical applications. Because icebergs are natural drifters,
which, at least in some years, occur in great numbers, our analyses were able
to confirm results of earlier studies on the circulation patterns on the Grand
Banks, and to provide greater spatial resolution and accuracy. The techniques
and results obtained here are applicable in forecasting the drift of any

-material or object on the water surface. Thus, the present model could
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provide an excellent starting point for the development of a realistic
forecasting system for oil spill trajectories. Other applications could
include search-and-rescue operations in which optimization of search patterns
requires consideration of the probability density as well as of the predicted

most-likely position.
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RECOMMENDATIONS

To make the most of the analysis and development undertaken in this
study, several recommendations are in order. Restricting ourselves only to
the problem of iceberg forecasting, we have ranked four topics for further
investigation:

i) field implementation of the forecasting model,

ii) further investigation of eddy variability on the Grand Banks,

iii) the use of an array of telemetering current meters to improve

forecastability, and

iv) the development of an eddy resolving model of local ocean

circulation.

A monitored field introduction of the model is essential. Ensuring the
acceptance of this new forecasting tool on the o0il rigs involves two aspects
of interaction with onshore and offshore personnel. First, seminars and short
training courses may be appropriate to introduce the new techniques to the
operators and to their environmental support groups. These seminars should be
geared to a proper ﬁnderstanding of the model operation and predictions. The
second, and probably the most important aspect, is the compilation and
incorporation of comments and suggestions from the actual users of the model.
Although many efforts have been made to ensure practical implementation of the

model, field trials are likely to bring out unanticipated shortcomings. Many
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model  enhancements could be considered now (such as the simultaneous
consideration of many icebergs, and the prediction of the most effective
evasive route) however, to ensure that these are of practical value they would
be best based on user feedback. To have a fully developed model within a
reasonable amount of time it is recommended that field trials and monitoring
be undertaken during the 1987 iceberg season so that an upgraded model would

be available for the following year.

Although our analysis has improved our understanding and knowledge of
iceberg drift on the Grand Banks, several questions remain unanswered. For
example, the diffences notedn between the 1984 and 1985 data have been
postulated as reflecting spatial variability (Section 2.5), but have not been
considered in detail. An analysis of iceberg veiocity autocorrelation and
wind/iceberg cross-correlation, including consideration of spatial
variability, would be particularly appropriate, especially as more data become
available after the 1986 season. If the features detected in the 1985 data
are confirmed as originating from diurnal shelf waves, their inclusion in the
model could also significantly improve predictions, especially near the shelf

edge.

The usefulness of using rig-observed currents in the prediction scheme
was considered in Section 3.4. It was concluded that, from a practical point
of view, moderate improvements in trajectory forecasts could be obtained by
using rig-observed currents. Although their use may be a worthwhile

improvement to the present forecasting model, the improvement becomes
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significant only when the iceberg gets close to the rig, which is a situation
that we are trying to avoid. More wuseful predictors would be currents
monitored from an array of telemetering instruments moored around the rig.
Such current meters would reduce the effect of observational error in iceberg
fixes, thus directly improving forecast accufacy. The major advantage may,
however, be due to the fact that Eulerian time scales are generally greater
than their Lagrangian counterparts, implying that eddy motion could be
effectively predicted for periods greater than 25 hours. A preliminary
feasibility study based on presently available data could determine the
optimum current meter spacing, as well as provide better estimates of forecast

improvement for a cost benefit analysis.

We have taken a statistical approach to prediét the motion resulting from
oceanic eddies, however it is theoretically possible to predict these
deterministically (Robinéon et al., 1984). Meteorologists, for example, are
using deterministic techniques to forecast storms which are the atmospheric
equivalent of ocean eddies. The principal difference between the two
applications is the spatial scale involved for the atmospheric and oceanic
phenomena. A model for resolving local eddies for the ocean would require a
rather small grid size, yet must consider a portion of the ocean large enough
so that eddies entering the boundaries cannot propagate to the rig within the
forecast period. To initialize the model and provide continuously changing
boundary conditions an array of instruments is required to monitor ocean
movement continuously within +the model domain. Such a forecasting system

would bear a cost comparable to weather forecasting, which is large in
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relation to current expenditures for iceberg trajectory prediction. Such a
system may, however, be justified in view of the cost of disconnecting a rig.
The future of iceberg trajectory forecasting depends largely on the
introduction of practical modelling tools. With this study, we have taken a
large step in this direction. Although thé confidence intervals of the
present model are admittedly large, the model should perform within the stated
accuracy. This level of error is common to all present iceberg models and is
the most precision practically possible at this time. Whether or not further
work is undertaken depends on the acceptance of the presgnt model. It is
therefore essential that this tool be introduced in the field promptly with

proper training and monitoring.
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EFFECTS OF SPATIAL VARIABILITY OF VELOCITY STATISTICS

Riley and Corrsin (1974) have pointed out that local mean shear will lead
to an accelerated growth in rms particle dispersion over that predicted by
simple Taylor diffusion. To determine if such accelerated growth is important
for the Hibernia region we shall consider the simple situation of a linear
velocity gradient defined by:

v = v, + sx and u = 0
where v and s are constants and with an isotropic variance of Vz. Riley and
Corrsiﬁ (1974) have determined the mean squared x and y Components of particle

position for such a velocity field as:

x'2 = 2 v? {)t{,’ R(B) dp dr (A.1)

Y'z = Ssz [ g t3 ét R(7) dr - t2 %t T R(r) dr + l.gt rsR(r) dr ] + x'2

w

(A.2)
The increase in Vv with x results in an accelerated diffusion in the vy
direction with time. Initially this effect is small as the eddy variability V
is much greater than that due to shear. However, at sufficiently large times,
the shear term in equation A.2 will dominate and

V2 s2 vZ % 471 (A.3)

Wi

To determine the importance of shear diffusion for iceberg modelling on

the Grand Banks we have computed ;72 and ;72 using an exponential
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autocorrelation function with a time scale of 25 hours and a value of s =
(0.07 m/s) / (10 km). The results, normalized by v / V, are presented in
Figure A.1. These show that after two integral time scales, (50 hours), the
shear results in only a 20% increase in rms iceberg displacement. Since

operational iceberg forecasting is concerned mostly with shorter times, and

considering the other uncertainties in our statistics, it is reasonable to"

ignore the influence of shear on the rms iceberg positions. Shear in mean
velocity will be included only insofar as it affects the predicted most likely

trajectory and not in the calculation of confidence intervals.

Freeland et al. (1975) have shown that spatial dependence of diffusion
coefficient will result in a mean up-gradient Lagrangian drift even though the
mean eddy velocity is assumed identically zéro. This is analogous to
turbulent entrainment processes where fluid at rest is being entrained into an
adjacent turbulent region.‘ The diffusion coefficient is related to the eddy
energy V2 through K = V2 7—1, and the Freeland et al. (1975) relation for

mean Lagrangian transport can be written as:

— - 2

u = 9 1 LAY (A.4)
From our observations we can estimate the magnitude of vv2 as
(0.05 m2/s%) / (100 km) vyielding with v * = 25 hours, a drift of 0.04 m/s.

This drift is small compared to the scale of mean currents in the study area

and in any case is included in our analysis because the mean flow patterns are

derived from Lagrangian velocity estimates.
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Figure A.1. Normalized rms deviation of position, with and without the
consideration of mean shear.




APPENDIX B

A MULTI-TERM PREDICTOR FOR THE GRAND BANKS




A MULTI-TERM PREDICTOR FOR THE GRAND BANKS

In the case where we have a set of velocity estimates obtained from
successive position observations, taken 4t apart, and each with an

uncorrelated error, €, we have in one dimension:

uo n ( xn+1 - xn * en+1 * en ) /4t (B.1)

ui - u? 4 2e%/ at? (B.2)
where ui is the observed variance,
u is the true variance, and
62 is the variance of positional errors.
' 2 2 2 é:g -1
Substituting 2 e/ 4t~ for eu in equation 1.8 gives A = { 1 + ——————] . The
u2 At2
observed discrete autocorrelation is given by:
R (4t) = AR(4t) - _;.( 1-A), and
Ro(n 4t) = A R(n 4t), n>1. (B.3)

-
Introducing this into equation 1.4 with R(7¥) = e t and assuming that the
observational interval, 4t, is small compared to 1—1, we can obtain the

following expression for the coefficients an of a N term predictor:

a = A+l eAY2Z Tty (B.4)
n n
with B8 defined by:
. - —2v4 ; ; i ;
1 ae T4t 5(1-a) A4t [ A, 1
14 _ 14
Ae Tt 5(1-a) 1 ae T4t s(1-8) .. A, e T4t
—2vat .
Ae 7 .. 1 . p3 e v24t
L o t : o L
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For v 4t = 12.5 and A = .65, which is representative for the Grand Banks

iceberg data set, we have 8 = 1 for N =1 and 8 = (0.74, 0.63) for N = 2. The
e . 2, 2 ..5, . .
prediction error (normalized by ( v~ / u” ) ) is given by:

E(t) = [ 2( 1t - 1 - e—vt) _ A1 - e—ﬂt)z e—vdt/a g pne~v(n—1)4t ].5
(B.5)

The first term in the bracket is the error variance using no predictor at all,
and results from modelling the drift as a simple Taylor diffusion. The second
term is the decrease in variance from the use of one or more predictors, which
will be denoted by PV for the predictor variance. Figure B.1 shows the
function E(t) for various number of predictors, N, with A = 0.65 and 4t = 2
hours which are répresentative of the Grand Banks data set. Also shown is
E(t) in the case A = 1, which represents the best possible prediction given
absolute accuracy in position observations. As may be seen the increase in
predicted variance for tﬁe two-term predictor is about 37% as compared to the

one-term predictor (i.e., P / PV = 1.37). This reduction, however,

vN=2 N=1
remains a small proportion of the total variance since PV / E2 is typically
0.35. The net gain in accuracy from a two-term predictor instead of a

one-term predictor is about 10% in terms of total variance or 5% in terms of

standard error.
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OPTIMUM TIME INTERVAL FOR A SINGLE PREDICTOR

To decrease the effects of noise, instead of using two predictors we can
investigate the use of a single predictor using a time interval of 24t between
observations ( u, = ( x - xn+ en +en ) / 24t ). The factor A then

n+2 +2

increases from 0.65 to 0.88. The reduction in variance, PV, is 28% greater
than for the N = 1 case discussed in Appendix B with A = 0.65 and an interval
of 1 hour.b We have, therefore, made almost the same gain in accuracy as using
a two-term predictor, using a computationally much simpler method. There must
obviously be a 1limit to which we can effectively increase the observational
interval since if we make it very large the resulting velocity estimate will
bear 1little correlation to the present or future iceberg velocity. The
following addresses this question and determines. the optimum observational
interval which is a function of positional error, ¢, as well as Lagrangian
time scale, 1_1. We also derive a more appropriate formula for prediction
error when the observational interval is a significant fraction of the

integral time scale.

We want to predict the change in position x in terms of input p. The
prediction formula is: X = ap witha =Xxp / pz. The mean square error is

x2 - (;3)2/ pz, so for optimum prediction we want to maximize (?3)2/ pz.

Here we have x = ft u(t') dt*', with u(t) the current speed, and the
o

predictor is the change in position from -T to 0, is given by:

p = 1° u(t') dt* + €, "¢

~-T T
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where eo and € are the_positional errors at times -T and 0, assumed to be

T

independent with zero mean and equal variance. Using these equations for x

-7
and p with a velocity autocorrelation R(T) = e we can derive:

XD = uzft dt’ fo dt'' R(t'-t'') = u27-2 (l—e—yt) (l—e—yT)
0 -T
p2 = usz dtn J‘T dt“ R(tl_tll) + 262
0 0o
) ] _ _gt0
= 2u2fT dt’ It dt'' e T{t-t't) + 2e2
(o} o

= 2u2 1_2(1T—1+e_1T) + 262

from which we can form the ratio 332/ p2. We therefore wish to choose T, the

time interval for the predictor, to maximize the following function:

T 2
F('y'[‘) = _(_1—_8__:71;_—
1T-1+e +a
22
1€ - dF _ .
where a = = . Requ1r1§g that TTF - 0 we get:
u
[(s-1+e $)+a] 2e 8 (1-e7%) - (1-e%)2(1-e7%) - 0
or ¢+a = sin ¢ = £+%£3 + .
— 1
-1 2, =
so that T = {El——f—] 3
2
u
) 2 -1 2
For the Grand Banks, ¢~ is (750m)", ~ is 25 hours and u is

(0.2 m/s)z, so that prediction error is minimized for T = 5.5 hours.

typically

It is interesting to note that as shown in Figure C.1 the function F(¥T)

changes only slowly for T greater than the optimum value. Therefore

T up to 10 hours would not significantly affect the prediction.
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smaller time has a much greater effect. It is also worth noting that the
maximum value of F does not depend very strongly on the position error e,
implying that as long as the positional time interval is equal or greater than

the optimum value the effect of positional crror is small.

The normalized prediction error can be given by:

» vt (1-e7"H2 (17"T)2

EC = 2(vt-1+e ) —
2(¥T-1+e ’T) + 2(12e/ :f )

which is compared in Figure C.2 with the multipredictor error. As can be

seen, using an optimum time interval offers practically the same advantage.
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